主要内容 #
- 问题介绍
- 求解方法
- 编程计算
1. 问题介绍 #
从原点出发,一步只能向右走、向上走或向左走。恰好走N步且不经过已走的点共有多少种走法?
样例输入:N=2
样例输出:result=7
样例输入:N=3
样例输出:result=17
2. 求解方法 #
解题思路:要解决走N步共有多少种走法,我们在拿到题目的时候最直接的想法就是先画出当N=1、N=2、N=3。。。。。N=n时对应走法的图例,由简单到复杂、由特殊到一般的推理过程,找出规律获得解题的思路。在数学上,我们称为归纳法。如果用编程的方法来求解这样的推理题,我们把这样的求解思路(算法)称之为递推法。递推的精髓在于f(n)的结果一般由f(n-1)、f(n-2)…..f(n-k)的前k次结果推导出来。我们在解决这类递推问题时,难点就是如何从简单而特殊的案例,找到问题的一般规律,写出f(n)与f(n-1)、f(n-2)…..f(n-k)之间的关系表达式,从而得出求解的结果。
(1) 当N=1时,绘出走法图
共有3种不同的走法,也就是黑色线条的数量,即f(1)=3
(2) 当N=2时,绘出走法图
共有7种不同的走法,也就是绿色线条的数量,即f(2)=7
(3) 当N=3时,绘出走法图
共有17种不同的走法,也就是红色线条的数量,即f(3)=17
由此,我们不难看出,对于任何一个起点,最多可以走出3种走法,但最少必须走出2种走法。那么我们要求出f(n),实际上转换为如果我们能够得到上一步即f(n-1)有多少个终点是有3种走法的,有多少个点有2种走法的,那么问题就解决了。
a. 上一步,即f(n-1)有多少个终点是有3种走法的。
对于N=3时,f(n-1)=f(2), 有3个点A、B、C可以走出3种不同走法的,这3个点是怎么得到的呢?它的存在与N值有没有必然的联系?如果我们能找到它与N之间的关系,问题也就解决了。有了这样的思路以后,我们不难找到这样的规律:如果f(n-2)存在,即上上步存在,那么从上上步出发的线路里面必然会有一条向上走的线路,而这条向上走的线路在到达f(n-1)之后, 向f(n)出发时也必然有左、上、右这三种走法,那么我们就得出了这样的结论:当f(n-2)存在时,f(n-2)的值实际上就等价于f(n-1)有多少个终点是有3种走法。
b. f(n-1)有多少个终点是有2种走法的
对于N=3时,有4个点D、E、F、G可以走出2种不同走法的,这4个点又是怎么得到的呢?它与N值有什么联系呢? 实际上我们在解决了上一个问题的时候,这个问题就变得相当容易了, f(n-1)减掉刚才有3种走法的点,剩下的点不就是只有2种走法了吗?即f(n-1)-f(n-2)。
c. 得出f(n)的一般关系式
f(n)=3*f(n-2)+2*(f(n-1)-f(n-2) ) (n>=3)
化简:
f(n)=2*f(n-1)+f(n-2) (n>=3)
3. 编程计算 #
#include <stdio.h> #include <windows.h> int main() { int n; int i; int fn_1,fn_2; printf("please input n="); scanf("%d",&n); //输入任意n值 int fn=0; if(n==1) fn=3; //初始化当n=1和n=2时的临界条件 else if(n==2) fn=7; else{ fn_1=7; fn_2=3; for(i=3;i<=n;i++) { fn=2*fn_1+fn_2; //当n>=3时fn的通式 fn_2=fn_1;//更新fn_1和fn_2的值 fn_1=fn; } } printf("一共有%d种走法!\n",fn); //输出结果 return 0; }