主要内容 #
- 目标和
- 求解思路
- 参考代码
1. 目标和 #
题目描述
给定一个非负整数数组,a1, a2, …, an, 和一个目标数,S。现在你有两个符号 + 和 -。对于数组中的任意一个整数,你都可以从 + 或 -中选择一个符号添加在前面。
返回可以使最终数组和为目标数 S 的所有添加符号的方法数。
示例:
输入:nums: [1, 1, 1, 1, 1], S: 3
输出:5
解释:
-1+1+1+1+1 = 3
+1-1+1+1+1 = 3
+1+1-1+1+1 = 3
+1+1+1-1+1 = 3
+1+1+1+1-1 = 3
一共有5种方法让最终目标和为3。
提示:
数组非空,且长度不会超过 20 。
初始的数组的和不会超过 1000 。
保证返回的最终结果能被 32 位整数存下。
2. 求解思路 #
如何转化为01背包问题呢。
假设加法的总和为x,那么减法对应的总和就是sum – x。
所以我们要求的是 x – (sum – x) = S
x = (S + sum) / 2
此时问题就转化为,装满容量为x背包,有几种方法。
大家看到(S + sum) / 2 应该担心计算的过程中向下取整有没有影响。这么担心就对了,例如sum 是5,S是2的话其实就是无解的,所以:
if ((S + sum) % 2 == 1) return 0; // 此时没有方案
同时如果 S的绝对值已经大于sum,那么也是没有方案的。
if (abs(S) > sum) return 0; // 此时没有方案
再回归到01背包问题,为什么是01背包呢?因为每个物品(题目中的1)只用一次!
这次和之前遇到的背包问题不一样了,之前都是求容量为j的背包,最多能装多少。本题则是装满有几种方法。其实这就是一个组合问题了。
1. 确定dp数组以及下标的含义
dp[j] 表示:填满j(包括j)这么大容积的包,有dp[j]种方法
其实也可以使用二维dp数组来求解本题,dp[i][j]:使用 下标为[0, i]的nums[i]能够凑满j(包括j)这么大容量的包,有dp[i][j]种方法。下面我都是统一使用一维数组进行讲解, 二维降为一维(滚动数组),其实就是上一层拷贝下来,这个在动态规划之前的165和166课中已经作出介绍。
2. 确定递推公式
有哪些来源可以推出dp[j]呢?
不考虑nums[i]的情况下,填满容量为j的背包,有dp[j]种方法。那么考虑nums[i]的话(只要搞到nums[i]),凑成dp[j]就有dp[j – nums[i]] 种方法。
例如:dp[j],j为5,
已经有一个1(nums[i]) 的话,有 dp[4]种方法 凑成 dp[5] 已经有一个2(nums[i]) 的话,有 dp[3]种方法 凑成 dp[5] 已经有一个3(nums[i]) 的话,有 dp[2]中方法 凑成 dp[5] 已经有一个4(nums[i]) 的话,有 dp[1]中方法 凑成 dp[5] 已经有一个5 (nums[i])的话,有 dp[0]中方法 凑成 dp[5]
那么凑整dp[5]有多少方法呢,也就是把 所有的 dp[j – nums[i]] 累加起来。所以求组合类问题的公式,都是类似这种:
dp[j] += dp[j - nums[i]]
3. dp数组的初始化
从递归公式可以看出,在初始化的时候dp[0] 一定要初始化为1,因为dp[0]是在公式中一切递推结果的起源,如果dp[0]是0的话,递归结果将都是0。dp[0] = 1,理论上也很好解释,装满容量为0的背包,有1种方法,就是装0件物品。
dp[j]其他下标对应的数值应该初始化为0,从递归公式也可以看出,dp[j]要保证是0的初始值,才能正确的由dp[j – nums[i]]推导出来。
4. 确定遍历顺序
我们讲过对于01背包问题一维dp的遍历,nums放在外循环,target在内循环,且内循环倒序。
5. 举例推导dp数组
输入:nums: [1, 1, 1, 1, 1], S: 3
背包大小bagSize = (S + sum) / 2 = (3 + 5) / 2 = 4
dp数组状态变化如下:
3. 参考代码 #
class Solution { public: int findTargetSumWays(vector<int>& nums, int S) { int sum = 0; for (int i = 0; i < nums.size(); i++) sum += nums[i]; if (abs(S) > sum) return 0; // 此时没有方案 if ((S + sum) % 2 == 1) return 0; // 此时没有方案 int bagSize = (S + sum) / 2; if (bagsize < 0) return 0; vector<int> dp(bagSize + 1, 0); dp[0] = 1; for (int i = 0; i < nums.size(); i++) { for (int j = bagSize; j >= nums[i]; j--) { dp[j] += dp[j - nums[i]]; } } return dp[bagSize]; } };