主要内容 #
- 完全背包问题
- 求解思路
- 参考代码
1. 完全背包问题 #
有N件物品和一个最多能背重量为W的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品都有无限个(也就是可以放入背包多次),求解将哪些物品装入背包里物品价值总和最大。
完全背包和01背包问题唯一不同的地方就是,每种物品有无限件。
在下面的讲解中,依然举这个例子:背包最大重量为4。物品为:
每件商品都有无限个!问背包能背的物品最大价值是多少?
2. 求解思路 #
01背包和完全背包唯一不同就是体现在遍历顺序上,我们直接针对遍历顺序经行分析!
首先在回顾一下01背包的核心代码:
for(int i = 0; i < weight.size(); i++) { // 遍历物品 for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量 dp[j] = max(dp[j], dp[j - weight[i]] + value[i]); } }
01背包内嵌的循环是从大到小遍历,为了保证每个物品仅被添加一次。而完全背包的物品是可以添加多次的,所以要从小到大去遍历,即:
// 先遍历物品,再遍历背包 for(int i = 0; i < weight.size(); i++) { // 遍历物品 for(int j = weight[i]; j <= bagWeight ; j++) { // 遍历背包容量 dp[j] = max(dp[j], dp[j - weight[i]] + value[i]); } }
dp状态图如下:
其实还有一个很重要的问题,为什么遍历物品在外层循环,遍历背包容量在内层循环?
01背包中二维dp数组的两个for遍历的先后循序是可以颠倒的,一维dp数组的两个for循环先后循序一定是先遍历物品,再遍历背包容量。
在完全背包中,对于一维dp数组来说,其实两个for循环嵌套顺序同样无所谓!
因为dp[j] 是根据 下标j之前所对应的dp[j]计算出来的。 只要保证下标j之前的dp[j]都是经过计算的就可以了。
先遍历背包在遍历物品,代码如下:
// 先遍历背包,再遍历物品 for(int j = 0; j <= bagWeight; j++) { // 遍历背包容量 for(int i = 0; i < weight.size(); i++) { // 遍历物品 if (j - weight[i] >= 0) dp[j] = max(dp[j], dp[j - weight[i]] + value[i]); } cout << endl; }
3. 参考代码 #
// 先遍历物品,再遍历背包 void test_CompletePack() { vector<int> weight = {1, 3, 4}; vector<int> value = {15, 20, 30}; int bagWeight = 4; vector<int> dp(bagWeight + 1, 0); for(int i = 0; i < weight.size(); i++) { // 遍历物品 for(int j = weight[i]; j <= bagWeight; j++) { // 遍历背包容量 dp[j] = max(dp[j], dp[j - weight[i]] + value[i]); } } cout << dp[bagWeight] << endl; } int main() { test_CompletePack(); }
// 先遍历背包,再遍历物品 void test_CompletePack() { vector<int> weight = {1, 3, 4}; vector<int> value = {15, 20, 30}; int bagWeight = 4; vector<int> dp(bagWeight + 1, 0); for(int j = 0; j <= bagWeight; j++) { // 遍历背包容量 for(int i = 0; i < weight.size(); i++) { // 遍历物品 if (j - weight[i] >= 0) dp[j] = max(dp[j], dp[j - weight[i]] + value[i]); } } cout << dp[bagWeight] << endl; } int main() { test_CompletePack(); }