主要内容 #
- 最长递增子序列
- 求解思路
- 参考代码
1. 最长递增子序列 #
给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。
子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。
示例 1: 输入:nums = [10,9,2,5,3,7,101,18] 输出:4 解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。
示例 2: 输入:nums = [0,1,0,3,2,3] 输出:4
示例 3: 输入:nums = [7,7,7,7,7,7,7] 输出:1
提示:
- 1 <= nums.length <= 2500
- -10^4 <= nums[i] <= 104
2. 求解思路 #
最长上升子序列是动规的经典题目,这里dp[i]是可以根据dp[j] (j < i)推导出来的
1. dp[i]的定义
dp[i]表示i之前包括i的以nums[i]结尾最长上升子序列的长度
2. 递推公式的推导
位置i的最长升序子序列等于j从0到i-1各个位置的最长升序子序列 + 1 的最大值。
所以:if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);
注意这里不是要dp[i] 与 dp[j] + 1进行比较,而是我们要取dp[j] + 1的最大值。
3. dp数组的初始化
每一个i,对应的dp[i](即最长上升子序列)起始大小至少都是1。
4. 确定遍历顺序
dp[i] 是有0到i-1各个位置的最长升序子序列 推导而来,那么遍历i一定是从前向后遍历。
j其实就是0到i-1,遍历i的循环在外层,遍历j则在内层,代码如下:
for (int i = 1; i < nums.size(); i++) { for (int j = 0; j < i; j++) { if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1); } if (dp[i] > result) result = dp[i]; // 取长的子序列 }
5. 举例推导dp公式
输入:[0,1,0,3,2],dp数组的变化如下:
参考代码 #
class Solution { public: int lengthOfLIS(vector<int>& nums) { if (nums.size() <= 1) return nums.size(); vector<int> dp(nums.size(), 1); int result = 0; for (int i = 1; i < nums.size(); i++) { for (int j = 0; j < i; j++) { if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1); } if (dp[i] > result) result = dp[i]; // 取长的子序列 } return result; } };