主要内容 #
- 图的定义
- 图的基本概念
- 连通图的概念
1. 图的定义 #
定义:图(Graph)是由顶点的有穷非空集合和顶点之间边的集合组成,通常表示为:G(V,E),其中,G表示一个图,V是图G中顶点的集合,E是图G中边的集合。
在图中需要注意的是:
- 线性表中我们把数据元素叫元素,树中将数据元素叫结点,在图中数据元素,我们则称之为顶点(Vertex)。
- 线性表可以没有元素,称为空表;树中可以没有节点,称为空树;但是,在图中不允许没有顶点(有穷非空性)。
- 线性表中的各元素是线性关系,树中的各元素是层次关系,而图中各顶点的关系是用边来表示(边集可以为空)。
2. 图的基本概念 #
(1)无向图
如果图中任意两个顶点之间的边都是无向边(简而言之就是没有方向的边),则称该图为无向图(Undirected graphs)。
(2)有向图
如果图中任意两个顶点之间的边都是有向边(简而言之就是有方向的边),则称该图为有向图(Directed graphs)。
(3)完全图
①无向完全图:在无向图中,如果任意两个顶点之间都存在边,则称该图为无向完全图。(含有n个顶点的无向完全图有(n×(n-1))/2条边)如下图所示:
②有向完全图:在有向图中,如果任意两个顶点之间都存在方向互为相反的两条弧,则称该图为有向完全图。(含有n个顶点的有向完全图有n×(n-1)条边)如下图所示:
(4)顶点的度
顶点Vi的度是指在图中与Vi相关联的边的条数。对于有向图来说,有入度和出度之分,有向图顶点的度等于该顶点的入度和出度之和。
(5)邻接
①若无向图中的两个顶点V1和V2存在一条边(V1,V2),则称顶点V1和V2邻接;
②若有向图中存在一条边<V3,V2>,则称顶点V3与顶点V2邻接,且是V3邻接到V2或V2邻接直V3;
无向图中的边使用小括号“()”表示,而有向图中的边使用尖括号“<>”表示。
(6)路径
在无向图中,若从顶点Vi出发有一组边可到达顶点Vj,则称顶点Vi到顶点Vj的顶点序列为从顶点Vi到顶点Vj的路径。
(7)连通
若从Vi到Vj有路径可通,则称顶点Vi和顶点Vj是连通的。
(8)权
有些图的边或弧具有与它相关的数字,这种与图的边或弧相关的数叫做权。
3. 连通图的概念 #
前面讲过,图中从一个顶点到达另一顶点,若存在至少一条路径,则称这两个顶点是连通着的。例如下图中,虽然 V1 和 V3 没有直接关联,但从 V1 到 V3 存在两条路径,分别是 V1-V2-V3 和 V1-V4-V3,因此称 V1 和 V3 之间是连通的。
无向图中,如果任意两个顶点之间都能够连通,则称此无向图为连通图。例如,下图中的无向图就是一个连通图,因为此图中任意两顶点之间都是连通的。