主要内容 #
- 买卖股票问题
- 贪心算法
- 参考代码
1. 买卖股票问题 #
给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
输入: [7,1,5,3,6,4]
输出: 7
解释: 在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4。随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6-3 = 3 。
示例 2:
输入: [1,2,3,4,5]
输出: 4
解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
示例 3:
输入: [7,6,4,3,1]
输出: 0
解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。
2. 贪心算法 #
这道题目可能我们只会想,选一个低的买入,在选个高的卖,在选一个低的买入…..循环反复。
如果想到其实最终利润是可以分解的,那么本题就很容易了!
如何分解呢?
假如第0天买入,第3天卖出,那么利润为:prices[3] – prices[0]。
相当于(prices[3] – prices[2]) + (prices[2] – prices[1]) + (prices[1] – prices[0])。
此时就是把利润分解为每天为单位的维度,而不是从0天到第3天整体去考虑!
那么根据prices可以得到每天的利润序列:(prices[i] – prices[i – 1])…..(prices[1] – prices[0])。
其实我们需要收集每天的正利润就可以,收集正利润的区间,就是股票买卖的区间,而我们只需要关注最终利润,不需要记录区间。
那么只收集正利润就是贪心所贪的地方!
局部最优:收集每天的正利润,全局最优:求得最大利润。
3. 参考代码 #
#include<iostream> #include<vector> using namespace std; class Solution { public: int maxProfit(vector<int>& prices) { int result = 0; for (int i = 1; i < prices.size(); i++) { result += max(prices[i] - prices[i - 1], 0); } return result; } }; int main(){ int n; //输入天数 cin >> n; vector<int> prices; for(int i = 0; i < n; ++i){ int price; cin >> price; prices.push_back(price); } Solution solution; cout << solution.maxProfit(prices) << endl; }