上节课我们学习了背包问题,本节课我们来深入另一类常见的动态规划问题——区间规划问题。这类问题通常是要求解基于一组数组的某个属性的最大或最小值,解决的方法一般是通过计算数据中的一小段的结果,并层层递推,最终求得整组数据的结果。要高效解决区间规划问题,最重要的是巧妙的设计动态规划数组。下面我们通过一些例子来学习这类问题。
一、回文子串问题 #
问题描述
给定一个字符串,你的任务是计算这个字符串中有多少个回文子串。
具有不同开始位置或结束位置的子串,即使是由相同的字符组成,也会被视作不同的子串。
示例 1:
输入:”abc” 输出:3 解释:三个回文子串: “a”, “b”, “c”
示例 2:
输入:”aaa” 输出:6 解释:6个回文子串: “a”, “a”, “a”, “aa”, “aa”, “aaa”
提示:
输入的字符串长度不会超过 1000。
求解思路 #
1. 暴力循环 #
两层for循环,遍历区间起始位置和终止位置,然后判断这个区间是不是回文。
时间复杂度:O(n^3)
2. 动态规划 #
1.确定dp数组(dp table)以及下标的含义
布尔类型的dp[i][j]:表示区间范围[i,j] (注意是左闭右闭)的子串是否是回文子串,如果是dp[i][j]为true,否则为false。
2. 确定递推公式
在确定递推公式时,就要分析如下几种情况。
整体上是两种,就是s[i]与s[j]相等,s[i]与s[j]不相等这两种。
当s[i]与s[j]不相等,那没啥好说的了,dp[i][j]一定是false。
当s[i]与s[j]相等时,这就复杂一些了,有如下三种情况:
- 情况一:下标i 与 j相同,同一个字符例如a,当然是回文子串
- 情况二:下标i 与 j相差为1,例如aa,也是回文子串
- 情况三:下标:i 与 j相差大于1的时候,例如cabac,此时s[i]与s[j]已经相同了,我们看i到j区间是不是回文子串就看aba是不是回文就可以了,那么aba的区间就是 i+1 与 j-1区间,这个区间是不是回文就看dp[i + 1][j – 1]是否为true。
以上三种情况分析完了,那么递归公式如下:
if (s[i] == s[j]) { if (j - i <= 1) { // 情况一 和 情况二 result++; dp[i][j] = true; } else if (dp[i + 1][j - 1]) { // 情况三 result++; dp[i][j] = true; } }
result就是统计回文子串的数量。
注意这里没有列出当s[i]与s[j]不相等的时候,因为在下面dp[i][j]初始化的时候,就初始为false。
3. dp数组如何初始化
dp[i][j]可以初始化为true么? 当然不行,怎能刚开始就全都匹配上了。
所以dp[i][j]初始化为false。
4. 确定遍历顺序
遍历顺序可有有点讲究了。
首先从递推公式中可以看出,情况三是根据dp[i + 1][j – 1]是否为true,在对dp[i][j]进行赋值true的。
dp[i + 1][j – 1] 在 dp[i][j]的左下角,如图:
如果这矩阵是从上到下,从左到右遍历,那么会用到没有计算过的dp[i + 1][j – 1],也就是根据不确定是不是回文的区间[i+1,j-1],来判断了[i,j]是不是回文,那结果一定是不对的。
所以一定要从下到上,从左到右遍历,这样保证dp[i + 1][j – 1]都是经过计算的。
有的代码实现是优先遍历列,然后遍历行,其实也是一个道理,都是为了保证dp[i + 1][j – 1]都是经过计算的。
代码如下:
for (int i = s.size() - 1; i >= 0; i--) { // 注意遍历顺序 for (int j = i; j < s.size(); j++) { if (s[i] == s[j]) { if (j - i <= 1) { // 情况一 和 情况二 result++; dp[i][j] = true; } else if (dp[i + 1][j - 1]) { // 情况三 result++; dp[i][j] = true; } } } }
5. 举例推导
举例,输入:”aaa”,dp[i][j]状态如下:
图中有6个true,所以就是有6个回文子串。
注意因为dp[i][j]的定义,所以j一定是大于等于i的,那么在填充dp[i][j]的时候一定是只填充右上半部分。
参考代码 #
class Solution { public: int countSubstrings(string s) { vector<vector<bool>> dp(s.size(), vector<bool>(s.size(), false)); int result = 0; for (int i = s.size() - 1; i >= 0; i--) { // 注意遍历顺序 for (int j = i; j < s.size(); j++) { if (s[i] == s[j]) { if (j - i <= 1) { // 情况一 和 情况二 result++; dp[i][j] = true; } else if (dp[i + 1][j - 1]) { // 情况三 result++; dp[i][j] = true; } } } } return result; } };
二、最长回文子序列 #
给定一个字符串 s ,找到其中最长的回文子序列,并返回该序列的长度。可以假设 s 的最大长度为 1000 。
示例 1: 输入: “bbbab” 输出: 4 一个可能的最长回文子序列为 “bbbb”。
示例 2: 输入:”cbbd” 输出: 2 一个可能的最长回文子序列为 “bb”。
提示:
1. 1 <= s.length <= 1000
2. s 只包含小写英文字母
刚刚做过了 动态规划:回文子串,求的是回文子串,而本题要求的是回文子序列, 要搞清楚这两者之间的区别。
回文子串是要连续的,回文子序列可不是连续的! 回文子串,回文子序列都是动态规划经典题目。
求解思路 #
1. 确定dp数组(dp table)以及下标的含义
dp[i][j]:字符串s在[i, j]范围内最长的回文子序列的长度为dp[i][j]。
2. 确定递推公式
在判断回文子串的题目中,关键逻辑就是看s[i]与s[j]是否相同。
如果s[i]与s[j]相同,那么dp[i][j] = dp[i + 1][j – 1] + 2;
如果s[i]与s[j]不相同,说明s[i]和s[j]的同时加入 并不能增加[i,j]区间回文子串的长度,那么分别加入s[i]、s[j]看看哪一个可以组成最长的回文子序列。
加入s[j]的回文子序列长度为dp[i + 1][j]。
加入s[i]的回文子序列长度为dp[i][j – 1]。
那么dp[i][j]一定是取最大的,即:dp[i][j] = max(dp[i + 1][j], dp[i][j – 1]);
代码如下:
if (s[i] == s[j]) { dp[i][j] = dp[i + 1][j - 1] + 2; } else { dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]); }
3. dp数组的初始化
首先要考虑当i 和j 相同的情况,从递推公式:dp[i][j] = dp[i + 1][j – 1] + 2; 可以看出 递推公式是计算不到 i 和j相同时候的情况。所以需要手动初始化一下,当i与j相同,那么dp[i][j]一定是等于1的,即:一个字符的回文子序列长度就是1。
其他情况dp[i][j]初始为0就行,这样递推公式:dp[i][j] = max(dp[i + 1][j], dp[i][j – 1]); 中dp[i][j]才不会被初始值覆盖。
vector<vector<int>> dp(s.size(), vector<int>(s.size(), 0)); for (int i = 0; i < s.size(); i++) dp[i][i] = 1;
4. 确定便利顺序
从递推公式dp[i][j] = dp[i + 1][j – 1] + 2 和 dp[i][j] = max(dp[i + 1][j], dp[i][j – 1]) 可以看出,dp[i][j]是依赖于dp[i + 1][j – 1] 和 dp[i + 1][j],
也就是从矩阵的角度来说,dp[i][j] 下一行的数据。 所以遍历i的时候一定要从下到上遍历,这样才能保证,下一行的数据是经过计算的。
递推公式:dp[i][j] = dp[i + 1][j – 1] + 2,dp[i][j] = max(dp[i + 1][j], dp[i][j – 1]) 分别对应着下图中的红色箭头方向,如图:
代码如下:
for (int i = s.size() - 1; i >= 0; i--) { for (int j = i + 1; j < s.size(); j++) { if (s[i] == s[j]) { dp[i][j] = dp[i + 1][j - 1] + 2; } else { dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]); } } }
5. 举例推导dp数组
输入s:”cbbd” 为例,dp数组状态如图:
红色框即:dp[0][s.size() – 1]; 为最终结果。
参考代码 #
class Solution { public: int longestPalindromeSubseq(string s) { vector<vector<int>> dp(s.size(), vector<int>(s.size(), 0)); for (int i = 0; i < s.size(); i++) dp[i][i] = 1; for (int i = s.size() - 1; i >= 0; i--) { for (int j = i + 1; j < s.size(); j++) { if (s[i] == s[j]) { dp[i][j] = dp[i + 1][j - 1] + 2; } else { dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]); } } } return dp[0][s.size() - 1]; } };
三、最长递增子序列 #
给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。
子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。
示例 1: 输入:nums = [10,9,2,5,3,7,101,18] 输出:4 解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。
示例 2: 输入:nums = [0,1,0,3,2,3] 输出:4
示例 3: 输入:nums = [7,7,7,7,7,7,7] 输出:1
提示:
- 1 <= nums.length <= 2500
- -10^4 <= nums[i] <= 104
求解思路 #
最长上升子序列是动规的经典题目,这里dp[i]是可以根据dp[j] (j < i)推导出来的
1. dp[i]的定义
dp[i]表示i之前包括i的以nums[i]结尾最长上升子序列的长度
2. 递推公式的推导
位置i的最长升序子序列等于j从0到i-1各个位置的最长升序子序列 + 1 的最大值。
所以:if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);
注意这里不是要dp[i] 与 dp[j] + 1进行比较,而是我们要取dp[j] + 1的最大值。
3. dp数组的初始化
每一个i,对应的dp[i](即最长上升子序列)起始大小至少都是1。
4. 确定遍历顺序
dp[i] 是有0到i-1各个位置的最长升序子序列 推导而来,那么遍历i一定是从前向后遍历。
j其实就是0到i-1,遍历i的循环在外层,遍历j则在内层,代码如下:
for (int i = 1; i < nums.size(); i++) { for (int j = 0; j < i; j++) { if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1); } if (dp[i] > result) result = dp[i]; // 取长的子序列 }
5. 举例推导dp公式
输入:[0,1,0,3,2],dp数组的变化如下:
参考代码 #
class Solution { public: int lengthOfLIS(vector<int>& nums) { if (nums.size() <= 1) return nums.size(); vector<int> dp(nums.size(), 1); int result = 0; for (int i = 1; i < nums.size(); i++) { for (int j = 0; j < i; j++) { if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1); } if (dp[i] > result) result = dp[i]; // 取长的子序列 } return result; } };
四、最长连续子数组 #
给两个整数数组 A 和 B ,返回两个数组中公共的、长度最长的子数组的长度。
示例:
输入: A: [1,2,3,2,1] B: [3,2,1,4,7] 输出:3 解释: 长度最长的公共子数组是 [3, 2, 1] 。
提示:
- 1 <= len(A), len(B) <= 1000
- 0 <= A[i], B[i] < 100
求解思路 #
注意题目中说的子数组,其实就是连续子序列。这种问题动规最拿手,动规五部曲分析如下:
1. 确定dp数组的含义
dp[i][j] :以下标i – 1为结尾的A,和以下标j – 1为结尾的B,最长重复子数组长度为dp[i][j]。 (特别注意: “以下标i – 1为结尾的A” 标明一定是 以A[i-1]为结尾的字符串)
那dp[0][0]是什么含义呢?总不能是以下标-1为结尾的A数组吧。
其实dp[i][j]的定义也就决定着,我们在遍历dp[i][j]的时候i 和 j都要从1开始。
就定义dp[i][j]为 以下标i为结尾的A,和以下标j 为结尾的B,最长重复子数组长度。不行么?
行倒是行! 但实现起来就麻烦一点,大家看下面的dp数组状态图就明白了。
2. 确定递推公式
根据dp[i][j]的定义,dp[i][j]的状态只能由dp[i – 1][j – 1]推导出来。
即当A[i – 1] 和B[j – 1]相等的时候,dp[i][j] = dp[i – 1][j – 1] + 1;
根据递推公式可以看出,遍历i 和 j 要从1开始!
3. dp数组的初始化
根据dp[i][j]的定义,dp[i][0] 和dp[0][j]其实都是没有意义的!
但dp[i][0] 和dp[0][j]要初始值,因为 为了方便递归公式dp[i][j] = dp[i – 1][j – 1] + 1;
所以dp[i][0] 和dp[0][j]初始化为0。
举个例子A[0]如果和B[0]相同的话,dp[1][1] = dp[0][0] + 1,只有dp[0][0]初始为0,正好符合递推公式逐步累加起来。
4. 确定遍历顺序
外层for循环遍历A,内层for循环遍历B。那外层for循环遍历B,内层for循环遍历A。不行么?
也行,一样的,这里就用外层for循环遍历A,内层for循环遍历B了。
同时题目要求长度最长的子数组的长度。所以在遍历的时候顺便把dp[i][j]的最大值记录下来。
代码如下:
for (int i = 1; i <= A.size(); i++) { for (int j = 1; j <= B.size(); j++) { if (A[i - 1] == B[j - 1]) { dp[i][j] = dp[i - 1][j - 1] + 1; } if (dp[i][j] > result) result = dp[i][j]; } }
5. 举例推导dp数组
拿示例1中,A: [1,2,3,2,1],B: [3,2,1,4,7]为例,画一个dp数组的状态变化,如下:
参考代码 #
class Solution { public: int findLength(vector<int>& A, vector<int>& B) { vector<vector<int>> dp (A.size() + 1, vector<int>(B.size() + 1, 0)); int result = 0; for (int i = 1; i <= A.size(); i++) { for (int j = 1; j <= B.size(); j++) { if (A[i - 1] == B[j - 1]) { dp[i][j] = dp[i - 1][j - 1] + 1; } if (dp[i][j] > result) result = dp[i][j]; } } return result; } };